
Simulink® Test™

Getting Started Guide

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Test™ Getting Started Guide
© COPYRIGHT 2015–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2015 Online Only New for Version 1.0 (Release 2015a)
September 2015 Online Only Revised for Version 1.1 (Release 2015b)
October 2015 Online only Rereleased for Version 1.0.1 (Release

2015aSP1)
March 2016 Online Only Revised for Version 2.0 (Release 2016a)
September 2016 Online Only Revised for Version 2.1 (Release 2016b)
March 2017 Online Only Revised for Version 2.2 (Release 2017a)
September 2017 Online Only Revised for Version 2.3 (Release 2017b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Product Overview
1

Simulink Test Product Description . 1-2
Key Features . 1-2

Introduction
2

Refine, Test, and Debug a Subsystem . 2-2
Model and Requirements . 2-2
Create a Harness for the Controller . 2-4
Inspect and Refine the Controller . 2-6
Add Test Inputs and Test the Controller 2-6
Debug the Controller . 2-7

Test Model Output Against a Baseline 2-10
Create the Test Case . 2-10
Run the Test Case and View Results 2-11

Introduction to the Test Manager . 2-14
Start the Test Manager . 2-14
Create Tests and Understand the Test Hierarchy 2-14
View Test Results . 2-16
Share Results . 2-16
Compare Test Files . 2-16

iii

Contents

Product Overview

1

Simulink Test Product Description
Develop, manage, and execute simulation-based tests

Simulink Test provides tools for authoring, managing, and executing systematic,
simulation-based tests of models, generated code, and simulated or physical hardware. It
includes a Test Sequence block that lets you construct complex test sequences and
assessments, and a Test Manager for managing and executing tests. Simulink Test
enables functional, baseline, equivalence, and back-to-back testing, including software-
in-the-loop (SIL), processor-in-the-loop (PIL), and real-time hardware-in-the-loop (HIL).
You can apply pass and fail criteria that include absolute and relative tolerances, limits,
logical checks, and temporal conditions. Setup and cleanup scripts help you automate or
customize test execution.

You can create nonintrusive test harnesses to test components in the system model or in
a separate test model. You can store test cases and their results, creating a repository for
reviewing and investigating failures. You can generate reports, archive and review test
results, rerun failed tests, and debug the component or system under test.

With Simulink Test and Simulink Requirements™, you can link test cases to
requirements captured in Microsoft® Word, IBM® Rational® DOORS®, and other
documents.

Support for industry standards is available through IEC Certification Kit (for IEC 61508
and ISO 26262) and DO Qualification Kit (for DO-178).

Key Features
• Test harness for subsystem or model testing
• Test sequence block for running tests and assessments
• Pass-fail criteria, including tolerances, limits, and temporal conditions
• Baseline, equivalence, back-to-back, and real-time testing
• Setup and cleanup scripts for customizing test execution
• Test Manager for authoring, executing, and organizing test cases and their results
• Customizable report generation for documenting test outcomes

1 Product Overview

1-2

https://www.mathworks.com/products/iec-61508/?refresh=true
https://www.mathworks.com/products/do-178/

Introduction

• “Refine, Test, and Debug a Subsystem” on page 2-2
• “Test Model Output Against a Baseline” on page 2-10
• “Introduction to the Test Manager” on page 2-14

2

Refine, Test, and Debug a Subsystem
In this section...
“Model and Requirements” on page 2-2
“Create a Harness for the Controller” on page 2-4
“Inspect and Refine the Controller” on page 2-6
“Add Test Inputs and Test the Controller” on page 2-6
“Debug the Controller” on page 2-7

Test harnesses provide a development and testing environment that leaves the main
model design intact. You can test a functional unit of your model in isolation without
altering the main model. This example demonstrates refining and testing a controller
subsystem using a test harness. The main model is a controller-plant model of an air
conditioning/heat pump unit. The controller must operate according to several simple
requirements.

Model and Requirements
1 Access the model. Enter

cd(fullfile(docroot,'toolbox','sltest','examples'))
2 Copy this model file and supporting files to a writable location on the MATLAB®

path:

sltestHeatpumpExample.slx
sltestHeatpumpBusPostLoadFcn.mat
PumpDirection.m

3 Open the model.

open_system('sltestHeatpumpExample')

2 Introduction

2-2

In the example model:

• The controller accepts the room temperature and the set temperature inputs.
• The controller output is a bus with signals controlling the fan, heat pump, and the

direction of the heat pump (heat or cool).
• The plant accepts the control bus. The heat pump and the fan signals are Boolean,

and the heat pump direction is specified by +1 for cooling and -1 for heating.

 Refine, Test, and Debug a Subsystem

2-3

The test covers four temperature conditions. Each condition corresponds to one operating
state with fan, pump, and pump direction signal outputs.

Temperature condition System
state

Fan
command

Pump
command

Pump
direction

|Troom - Tset| < DeltaT_fan idle 0 0 0
DeltaT_fan <= |Troom - Tset| <
DeltaT_pump

fan only 1 0 0

|Troom - Tset| >= DeltaT_pump
and Tset < Troom

cooling 1 1 -1

|Troom - Tset| >= DeltaT_pump
and Tset > Troom

heating 1 1 1

Create a Harness for the Controller
1 Right-click the Controller subsystem and select Test Harness > Create for

‘Controller’.
2 Set the harness properties:

In the Basic Properties tab:

• Name: devel_harness_1
• Clear Save test harness externally
• Sources and Sinks: None and Scope
• Clear Add separate assessment block
• Select Open harness after creation

2 Introduction

2-4

3 Click OK to create the test harness.

 Refine, Test, and Debug a Subsystem

2-5

Inspect and Refine the Controller

1 In the test harness, double-click Controller to open the subsystem.
2 Connect the chart to the Inport blocks.

3 In the test harness, click the Save button to save the test harness and model.

Add Test Inputs and Test the Controller

1 Navigate to the top level of devel_harness_1.
2 Create a test input for the harness with a constant Tset and a time-varying Troom.

Connect a Constant block to the Tset input and set the value to 75.
3 Add a Sine Wave block to the harness model to simulate a temperature signal.

Connect the Sine Wave block to the conversion subsystem input Troom_in.
4 Double-click the Sine Wave block and set the parameters:

• Amplitude: 15
• Bias: 75
• Frequency: 2*pi/3600
• Phase (rad): 0
• Sample time: 1

2 Introduction

2-6

• Select Interpret vector parameters as 1–D.
5 Connect Inport blocks to the Data Store Write inputs.

6 In the Configuration Parameters dialog box, in the Data Import/Export pane,
select Input and enter u. u is an existing structure in the MATLAB base workspace.

7 In the Solver pane, set Stop time to 3600.
8 Open the scope in the test harness and change the layout to show three plots.
9 Click Run to simulate.

Debug the Controller
1 Observe the controller output. fan_cmd is 1 during the IDLE condition where |

Troom - Tset| < DeltaT_fan.

This is a bug. fan_cmd should equal 0 at IDLE. The fan_cmd control output must be
changed for IDLE.

 Refine, Test, and Debug a Subsystem

2-7

2 In the harness model, open the Controller subsystem.
3 Open controller_chart.
4 In the IDLE state, fan_cmd is set to return 1. Change fan_cmd to return 0. IDLE is

now:

IDLE
entry:
fan_cmd = 0;
 pump_cmd = 0;
 pump_dir = 0;

5 Simulate the harness model again and observe the outputs.

2 Introduction

2-8

6 fan_cmd now meets the requirement to equal 0 at IDLE.

See Also

Related Examples
• “Test a Model Component Using Signal Functions”
• “Test Downshift Points of a Transmission Controller”

 See Also

2-9

Test Model Output Against a Baseline
To test the simulation output of a model against a defined baseline, use a baseline test
case. In this example, use the sldemo_absbrake model to compare the simulation
output to a baseline captured from an earlier state of the model.

Create the Test Case
1 Open the sldemo_absbrake model.
2 To open the Test Manager from the model, select Analysis > Test Manager.
3 From the Test Manager toolstrip, click New to create a test file. Name and save the

test file.

The test file consists of a test suite that contains one baseline test case. They appear
in the Test Browser pane.

4 Right-click the baseline test case in the Test Browser pane, and select Rename.
Rename the test case to Slip Baseline Test.

5 Under System Under Test in the test case, click the Use current model button

 to load the sldemo_absbrake model into the test case.
6 To record a baseline from the system under test, under Baseline Criteria, click

Capture.
7 In the Capture Baseline dialog box, for the file format, select MAT. Specify a location

to save the baseline to and click Create.
8 Expand the Baseline Criteria section. The baseline criteria file and the logged

signals appear in the table. Set the Absolute Tolerance of the Ww signal to 15.

Tip To add or remove columns in the baseline criteria table, click the column selector
button .

2 Introduction

2-10

matlab:open_system('sldemo_absbrake')
matlab:open_system('sldemo_absbrake')

For more information about tolerances and criteria, see “Apply Tolerances to Test
Criteria”.

Run the Test Case and View Results
1 In the sldemo_absbrake model, set the Desired relative slip constant block to

0.22.
2 In the Test Manager, select the Slip Baseline Test case in the Test Browser pane.
3 On the Test Manager toolstrip, click Run.

In the Results and Artifacts pane, the new test result appears at the top of the
table.

4 Expand the results until you see the baseline criteria result. Right-click the result
and select Expand All Under.

The signal yout.Ww passes, but the overall baseline test fails because other signal
comparisons specified in the Baseline Criteria section of the test case were not
satisfied.

5 To view the yout.Ww signal comparison between the model and the baseline criteria,
expand Baseline Criteria Result and click the option button next to the
yout.Ww signal.

The Comparison tab opens and shows the criteria comparisons for the yout.Ww
signal and the tolerance.

 Test Model Output Against a Baseline

2-11

6 You can also view signal data from the simulation. Expand Sim Output and select
the signals you want to plot.

2 Introduction

2-12

The Visualize tab opens and plots the simulation output.

For information on how to export results and generate reports from results, see “Export
Test Results and Generate Reports”.

See Also

Related Examples
• “Apply Tolerances to Test Criteria”
• “Capture Baseline Criteria”
• “Run Tests in Multiple Releases”

 See Also

2-13

Introduction to the Test Manager

In this section...
“Start the Test Manager” on page 2-14
“Create Tests and Understand the Test Hierarchy” on page 2-14
“View Test Results” on page 2-16
“Share Results” on page 2-16
“Compare Test Files” on page 2-16

The Test Manager in Simulink Test helps you to automate Simulink model testing and
organize large sets of tests. You perform model tests in the Test Manager using test cases
in which you specify the criteria that determine a pass-fail outcome. After you run a test,
you can view and share the results.

Start the Test Manager

You can start the Test Manager from a model or from the MATLAB command prompt.

• To start the Test Manager from a model, select Analysis > Test Manager.
• To start the Test Manager from the command prompt, enter: sltestmgr.

Create Tests and Understand the Test Hierarchy

In the Test Manager, you create test files, which contain one or more test suites that
each contain one or more test cases.

To create a test file, in the Test Manager, select New > Test File. Name the file and
click Save.

The test files and their contents appear in the Test Browser pane.

Each new test file contains a test suite, New Test Suite 1, which contains a test case,
New Test Case 1. You can rename test suites and test cases in the browser. The figure
shows a test file that contains two test suites that each contain test cases.

2 Introduction

2-14

Add test suites and test cases to the test file hierarchy using the New menu. Use test
suites to group related test cases. For each test case, specify details such as the model
under test, the simulation outputs to capture, and parameter overrides to apply. Run the
test case in the Test Manager, and view results in the Results and Artifacts pane.

For baseline and equivalence test cases, you can specify tolerances for the simulation
outputs that determine pass or fail. For more information on setting tolerances, see
“Apply Tolerances to Test Criteria”.

Using the Test Manager, from the New menu, you can create these types of test cases:

• Baseline — A baseline test is a type comparison test. For a baseline test, you first
generate a baseline set of simulation outputs as the basis for comparison. Running a
baseline test compares the outputs of the comparison simulation to the baseline. With
equivalence tests, you can specify tolerances that determine a range of values that
allow the test to pass. That is, the results are equivalent even if not the same. You
can set absolute, relative, leading, or lagging tolerances in the Baseline Criteria
section of the test case. See “Test Model Output Against a Baseline”.

• Equivalence — An equivalence test in Test Manager compares signal outputs from
two simulations. You can specify tolerances that help the test determine whether the
results are equivalent. Set tolerances in the Equivalence Criteria section of the test
case. See “Test Two Simulations for Equivalence”.

• Simulation — A simulation test checks that a simulation runs without errors,
including model assertions. See “Test a Simulation for Run-Time Errors”.

• Real-Time Test — A baseline, equivalence, or simulation test that runs on the target
hardware. See “Test Models in Real Time”.

 Introduction to the Test Manager

2-15

• Test Manager Generated Tests — Tests that you do not need to configure:

• Test File from Model, which generates a test file and uses signal builders and
test harnesses in the model as the basis for generating test cases. See “Generate
Test Cases from Model Components”.

• Test for Subsystem, which generates a test harness for the subsystem you select
and generates a test case to run on the test harness. See “Generate Test for a
Subsystem”.

View Test Results
Tests can pass or fail. If all the criteria defined in a test case are satisfied, within the
defined tolerances, then a test passes. If any of the criteria are not satisfied, then the test
fails. After the test runs, you can see the results in the Results and Artifacts pane.
Each test result has a summary page that highlights the outcome of the test: passed,
failed, or incomplete. You can also see the simulation output in the results. You can
further inspect the signal data from the simulation output using the data inspector view.
To view a result in the data inspector view, select it.

Share Results
Once you have completed the test execution and analyzed the results, you can share the
test results with others or archive them. If you want to share the results to view later in
the Test Manager, then you can export the results to a file. To archive the results in a
document, generate a report, which can include the test outcome, test summary, and
criteria used for test comparisons. See “Export Test Results and Generate Reports”.

Compare Test Files
You can use the Compare command in the File section of the MATLAB toolstrip to
compare two test files. Comparing test files is useful for determining the differences
between two similar test files. For example, you can see whether they contain the same
test cases and whether those test cases are configured identically.

1 From the File section of the MATLAB toolstrip, click Compare.
2 In the First file or folder box, enter the first test file that you want to compare.

Test files are in the .mldatx format.
3 In the Second file or folder box, enter the second test file that you want to

compare.

2 Introduction

2-16

4 For Comparison type, select Simulink Test File Comparison. Then click
Compare.

The figure shows an example of a comparison between two test files. The highlights
indicate where one file specifies information that the comparison file does not. For
example, newbaseline.mldatx includes a test suite that the other file does not
contain.

See Also

Related Examples
• “Test Model Output Against a Baseline”
• “Test Two Simulations for Equivalence”
• “Code Generation Verification Workflow with Simulink Test”

 See Also

2-17

